Lady abpvalakt ko. Ogenobed

. Rel al mined gradi the ក្រុមប្រព័ត្តបើកា 🕒

Li ₃ BN ₂ (3)	Li _z BN ₂	n Forms of Li ₃ BN ₂ Wentorf's phase(2) (quenched from high pressure)	Li3BN2(W)* (quenched from high pressure)
$d(A)$ I/I_0	d(A) <u>I/I</u> o	d(Å) I/I _o	$\frac{d(A)}{d(A)}$ $\frac{I/I}{O}$
3.81 m	3.73 10	5.60 m 3.60 s	5.57 20 3.61 70
	3.47 50 3.27 10	3.50 mw 3.34 mw	3.28
	2.78 100 2.67 20 2.63 30	3.25 W 3.08 ms 2.85 W	3.06 45 2.84 15
	2.22 5	2.78 s 2.67 m	2.78 100 2.67 40
2.07 vs	2.07	2.56 mw 2.50 mw 2.35 w	2.59 15 2.50 5
1.93 w	2.05 3 25 1.91 5	2.35 W 2.25 m 2.15 ms	2.27 10 2.15 10
1.83 vw		2.07 vw 2.03 m	2.03 15 1.97 5
1.74 m	1.74 10 1.69 5 1.64 20	1.96 W 1.92 W 1.85 mw	1.97 5 1.93 5 1.85 15
1.64 vs 1.55 m	1.64 20 1.63 10 1.55 10	1.73 mw 1.68 VW	1.74 5 1.69 5
1.48 W		1.64 m 1.62 m	1.65 10 1.63 10 1.61 5
1.42 W		1.60 m 1.53 m 1.50 vw	1.01
1.40 w		1.44 W 1.41 W	
		146.1 (1883) 1 -2	

^{*} X-ray results from present study; data taken on GE x-ray diffractometer with $CrK\alpha$ radiation; s=strong; m=medium; w=weak; v=very. Additional weak lines at smaller d-spacings are found in published data from references (2) and (3).

that of $\operatorname{Li}_3\operatorname{AlN}_2$ and the other members of an isomorphous series (6) formed by substitutions for Al^{3+} and for N^{3-} . Since the structures of these compounds are based on an anti-CaF $_2$ lattice (i.e., N^{3-} in Ca $^{2+}$ sites), compression along <111> could result in a layer lattice of hexagonal symmetry with layers of close-packed N^{3-} ions perpendicular to the hexagonal "c" axis.

The lath-like morphology of this form is best developed between 1000°C and 1400°C above 40 kb. Quenched runs from the liquid region above the melting curve of the high pressure form are characterized by fine-grained clusters of equant crystals, and the x-ray patterns differ somewhat in peak intensity from those of crystals quenched from the stability region of the phase. These differences appear to be related to a more random orientation obtained when preparing an x-ray slide with the material quenched from the liquid.

 $\text{Li}_3\text{BN}_2(W)$ is also markedly less soluble in water at room temperature than the low pressure form.

Results and Discussion

General

Our interpretation of the results is summarized in the P-T representation of Fig. 2 in which a large area of stability of $\text{Li}_3\text{BN}_2(W)$ exists. Some aspects of this interpretation need amplification.

FIG. 2
P-T Diagram for the
System Li3BN2
Quench data indicated by A,O,o;
thermal analysis
data by x

A clean separation of a homogeneous sample from the center of a cell in which a temperature gradient existed was sometimes difficult to obtain. Particularly near the P-T conditions where